
Study notes for Chapter Five of Solar Sailing: Technology, Dynamics, and Mission 

Applications by Colin R. McInnes                    last edit 2016 April 6 MBM   

 

pXXY means page XX.     Y = t/m/b  for top/middle/bottom third of page 

 

Chapter Five   

 

p171.12  Non-Keplerian means a continuously powered orbit, specifically a circular orbit 

(p172.12, p172.23) of radius ρ, usually with the central mass not in the plane of the 

orbit.   

 

p172.12  Displaced elliptical orbits are weird, probably not stable?  Maintaining a give 

offset distance z may be possible by varying the pitch angle, but then the central force 

is no long simply 1/r2.   

 

p172.34  how stable is a sail in orbit around expanded Lagrangian point?   

 

p173.04  Add “operation for axially displaced solar sails”.   Sun-centered non-Keplerian  

means circular but displaced along orbit axis, Sol no longer in plane of orbit.  There 

are also “forced orbits” with the central mass in the orbital plane but with a non-

Keplerian period. 

 

p173.12  Emphasize ρ is constant.   

 

p173.24  Does “Keplerian synchronous orbit” mean synchronous to regular Keplerian orbit?  

If so “Keplerian-synchronous” may help.   

 

p174.13  Fig.5.1. redrawn.  Angle tanϕ = z/ρ.  Note that ρ is radius of the displaced 

orbit.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p174.35  “as defined in section 2.3.3”. Eq.5.2a, a from eq.2.24 by  

         substituting in μ.  V is Newtonian physics.   

 

p174.42  Need to confirm eq.5.3b.   

 

p175.05  “Equilibrium” means dr/dt = 0, and d2r/dt2 = 0.  

p175.08  Eq.5.5  ▽U X n = 0 means they are parallel, so ε can be anything.   

 

p175.06  a and n are parallel so a X n = 0.   

 

p175.24  Eq.5.8 is from eq.5.4 and eq.5.2a.   

 

p175.32,38,40  Confirm eq.5.9, eq.5.10.  Could not follow book, so used alternate method.   

     Using the notation in redrawn fig.5.1, the acceleration due to gravity is  

aGrav =  (μ/r2),            and from photon pressure  

aPhot = β(μ/r2)cos2α.     

ω is the constant rotation about the z-axis.   

ω~ is rotation speed at radius r if there is no photon acceleration.  (ω~)2 = μ/r3 . 

tanϕ = z/ρ and cosϕ = ρ/r.   

 

Fig.5.1  redrawn in the 
ρ-z plane.  ω is along z-
axis so motion of sail is 
into page.   
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Then the accelerations parallel to the z-axis are 

az
Grav =  (μ/r2)sinϕ   

az
Phot = β(μ/r2)cos2αsin(ϕ+α) 

 

For z to stay constant, the accelerations sum to zero.  

         az
Grav = az

Phot 

  (μ/r2)sinϕ = β(μ/r2)cos2αsin(ϕ+α) 

        sinϕ = βcos2α     sin(ϕ+α) 

        sinϕ = βcos2α{sinϕcosα + cosϕsinα} 

        tanϕ = βcos2α{tanϕcosα + sinα} 

Eq.X    tanϕ = βcos3α{tanϕ     + tanα} 

 

The accelerations parallel to ρ are 

aρ
Grav =  (μ/r2)cosϕ 

aρ
Phot = β(μ/r2)cos2α cos(ϕ+α) 

 

For circular motion with radius ρ, the required central acceleration 

         ω2ρ =       aρ
Grav - aρ

Phot  

         ω2ρ = (μ/r2)cosϕ - β(μ/r2)cos2α cos(ϕ+α) 

         ω
2
ρ = (μ/r

2
)cosϕ - β(μ/r

2
)cos

2
α {cosϕcosα - sinϕsinα} 

       ω2ρ/r = (μ/r3)cosϕ - β(μ/r3)cos2α {cosϕcosα - sinϕsinα} 

       ω2ρ/r =((ω~)2)cosϕ - β((ω~)2)cos2α {cosϕcosα - sinϕsinα} 

       Temporarily writing W = ω2/(ω~)2 and remembering cosϕ = ρ/r 

       Wcosϕ = cosϕ - βcos2α {cosϕcosα - sinϕsinα} 

       W     =    1 - βcos2α {    cosα - tanϕsinα}   

      (W-1)  =  - βcos2α {cosα - tanϕsinα}   

Eq.Y  (1-W)  =    βcos3α {   1 - tanϕtanα}  

 

 

Dividing Eq.X by Eq.Y 

        tanϕ/(1-W) = {tanϕ + tanα}/{1 - tanϕtanα}  

tanϕ{1 - tanϕtanα} = {tanϕ + tanα}(1-W)  

tanϕ   - tan2ϕtanα =  tanϕ(1-W) + tanα(1-W) 

tanϕ   - tanϕ(1-W) = tanα}(1-W) + tan2ϕtanα 

         tanϕ(W)   = {(1-W) + tan2ϕ}tanα 

 

 tanα = tanϕ(W)__  = tanϕ (ω2/(ω~)2)  in agreement with eq.5.10a.    

        tan2ϕ+(1-W)  tan2ϕ+(1-ω2/(ω~)2) 

 

     With even more fussiness put eq.5.10a into Eq.X to get eq.5.10b.   

 

 

p175.44  Making μ unity means it may disappear from equations, just be there implicitly.  

Check units.   

 

p176.08  Type I: fixed orbital period (fixed ω) for all radii ρ and displacement from 

central mass z (distance from central mass r.   

 

p176.44  Figs.5.2, 5.3, and 5.4.  The numbers 1-6 next to curves refer to columns in 

Tab.5.1 and are not themselves β.  Sol at center, should be an open circle.  Arrows are 

sail normals.  Sail can lengthen period, never shorten it.  Eqs.5.10ab contain  

(ω~) = (μ/r3), with r = √{ρ2 + z2}.  This additional dependence on ρ and z leads to the 

curves of fig.5.2.   

 

p177.36  eq.5.11 from eq.5.6, using eq.5.9?  r^•(eq.5.6)? 

 

p178.20  Numbers in figs.5.2,5.3,and 5.4 come from Tab.5.1. Sol at center.  Confusion at 

z=0 ρ=1.  This is Terra’s orbit (r=ρ) so β=0 or α=90° should work.   
 

p178.28  Type II: ω = ω~, so that the sailcraft at distance r and displacement z 

maintains distance and orientation relative to a planet.  

   

p178.32  In eq.5.12ab, note that the ration has gone from z/ρ to ρ/z.  



 

p179.01  Type III:  For a given z and ρ, choose ω to get the minimum β possible.   

 

p179.44  Numbers in figs.5.2,5.3, and 5.4 come from Tab.5.1, Sol at center.   

 

p180.06  Sec.5.2.2.4  ω = ρ-3/2, units check, see p175.   

 

p180m  Sec.5.2.3  Eqs.5.16-5.29.  I am lost.  I did not put most of these symbols in the 

list.   

 

p183.37   Section 5.2.3.2.  Still lost.   

 

p183.41  “ω = 1 in eq.5.27”, ω is part of L in eqs.5.24. 

 

p184.34  To fig.5.6, add to caption.  Below C1 is stable, including C3.  The right-hand 

side is forbidden.  The rest, including C2, is allowed but not stable.  The Ci correspond 

to extreme Type I orbits, and Types II and III.  

 

p186.20  Fig.5.7.  See p185.18   

 

p186.25  In eq.5.34 hwich comes from eq.4.16, add exponent. d2r/dt2 

 

p186.32  η is radial perturbation, ξ is transverse.  β = 1.   

         Perturb by r0 → r0 + δ, with δ = ηr^ + ξθ^.   

 

p186.35  Show eqs.5.35a.  By eq.5.34 d2r/dt2 = d2rr^/dt2 = -(1-β)(μ/r2)r^.   

Draw rr^ and ξθ^ at 90° to it, so their sum (hypotenuse) is √{r2 + ξ2}. Then  
d2r/dt2 = d2(rr^ + ξθ^)/dt2 = d2(rr^)/dt + d2(ξθ^)/dt2 = so that  

d2(ξθ^)/dt2 = d2(rr^ + ξθ^)/dt2 - d2(rr^)/dt =   

        -(1-β)(μ/(√{r2 + ξ2})2) - (-(1-β)(μ/r2)) = 

        -(1-β)(μ/{r2 + ξ2})    + (1-β)(μ/r2)) = -(1-β)(μ)[1/{r2 + ξ2} - (1/r2)]  

  = -(1-β)(μ)[ r2 – (r2+ ξ2)]/[r2{r2 + ξ2}] = -(1-β)(μ)[–ξ2)]/[r2{r2 + ξ2}] = 
******** try this again, see notes on separate sheet.   

 

     Eq.5.35a  If you displace the sail a small distance ξ transversely without re-

orienting it to the sun-line, the normal now makes an angle of α = ξ/r radians WRT 

original sun-line.  The radial force is then –(1-βcos3α)μr^/r2 and the tangential force is 

–(βcos2αsinα)μθ/r2.  Since α is small cosα ≈ 1 and sinα ≈ ξ/r.  Given β = 1, the 

tangential force is -1(1)2(ξ/r)μ/r2 = -ξμ/r3.  This is a restoring force.  Note that the 

radial force is not quite zero any more.  The sail will overshoot and oscillate across 

the original sun-line, but moving ever more sunward.  See also eqs.4.37ab with dθ/dt = 0 

(just displacement with no residual motion).   

     Eq.5.35b  For β = 1, d2r/dt2 = 0 by eq.5.34, and  

d2(r+η)/dt2 = (d/dt)[d(r+η)/dt] = (d/dt)[dr/dt + dη)/dt] = d2r/dt2 + d2η/dt2 

LHS is -(1-β)(μ/(√{r2 + η2})2) = -(1-β)(μ/{r2 + η2} = 0 since β = 1 
RHS is -(1-β)(μ/r2) + d2η/dt2 = 0 + d2η/dt2 so that 0 = d2η/dt2. Maybe   

 

p187.07  F is from p45.07.     

 

p188.11  “active station keeping”.  Any physical sail will need active control, as its 

characteristics will never be known exactly, nor will they be stable.  This needs more 

consideration.  IKAROS could vary the reflectivity of portions of the sail.   

 

p188.20  In general, sec.5.2.4 loses me.   

 

p188.35  Sail elevation γ defined p174 fig.5.1.  Sec.5.2.4.1 lost me.   

 

p189.15  Think of δγ as “change in gamma”.   

 

p190.07  Sect.5.2.4.2  Lost again.   



p190.30  “damp asymptotically to non-zero values.”  Does this imply that solid line of 

fig.5.9 ends up below the x-axis?  In this section, does α vary?  I think it must.  Then 

in sec.5.2.4.3 α is indeed fixed.   

 

p190.42  “does not damp errors” may mean orbit is close to desired but not exact.   

 

p191.20  Fig.5.8, same as fig.5.7 (p186) but with control by varying γ.  See p193 fig.5.8 

as well as fig.5.10.   

 

p191.44  Vertical axis is δγ. The solid line leads from sec.5.2.4.2 to fig.5.8 (α 

varies), and dashed line goes with sec.5.2.4.3 and fig.5.10 (α fixed).   

 

p192.02  Compare fig.5.1 p.174 and its redrawn version in these notes.  The angle between 

r and ρ is ϕ, and γ = ϕ + α.  cosϕ = ρ/r and sinϕ = z/r.  Then add parentheses to 

eqs.5.50ab (similar to discussion of p175) to get:    

 

p192.07 eq.5.50a  aρ = (β/r
2)cos2αcosϕ = (β/r2)cos2α[ (cosα)(ρ/r) - (sinα)(z/r) ]  

    

p192.10 eq.5.50b  az = (β/r
2)cos2αsinϕ = (β/r2)cos2α[ (sinα)(ρ/r) + (cosα)(z/r) ],  

        noting the plus sign instead of a minus sign.   

 

p192.12ff  Lost.  Eq.5.50ab  

 

p193.18  eq.4.56.  Restate as α = γ – atan(z/ρ) = γ - ϕ 

 

p193.23  How to get from eq.5.56 to eq.5.57?   

 

p193.29  Compare fig.5.7 and fig.5.10 

 

p193.42  “identical, but have different orientation” is not obvious, unless perhaps 

restricted to circular orbits with same forcing acceleration.   

 

p193.44  “retrograde” is not necessary. In fig.5.12 (p196), from Orbit I around +z-axis 

transfer to Orbit II around +y-axis.  After 1/4 orbit, transfer to Orbit VI (-x-axis), 

and after another 1/4 orbit to Orbit III (-z-axis) in same direction as Orbit I.  Better 

if orbit numbers followed same pattern as fig.5.11 p195.   

 

p194.20  Compare fig.5.10 with fig.5.7.   

 

p194.30  “in fig.5.11”  See also fig.5.1 p174 

 

p194.32  Change to “The orbit inclination i = ϕ is obtained ...”  

 

p194.36  “argument of pericentre periapsis (or in this case perihelion) of 270°”.   

         270° from hwat reference?  In any case, perihelion is aphelion plus 180°. 

 

p194.37  “patch always occurs at aphelion” again implies that “non-Keplerian” means 

“circular but displaced from solar plane”.   

 

p194.38  “force exerted on the solar sail is always normal to the solar sail velocity 

vector” again implies that “non-Keplerian” means “circular but displaced from solar 

plane”.   

 

p194.41  Eq.5.58 has no mass term, so this is energy/unit mass, as mentioned elsehwere.  

E/m = KE/m + PE/m.  It is easier to get the semi-major axis “a” from vis viva equation:  

v2 = 2μ/r - μ/a.  As the sail turns edgewise to Sol the only force is from gravity. Put  

v = ωρ and r = rA = √{ρ
2 + z2} into vis viva equation to get ω2ρ2  = 2μ/√{ρ2 + z2} -  μ/a, 

and rearrange to eq.5.59.   

 

p195.16  Fig.5.11.  Orbit II around + x-axis.  In fig.5.12 Orbit II is around + y-axis.  

Text references to z1 z2 ρ1 ρ2 ω1 ω2 are in sec.5.2.5.2.  See note p193.44.   

 

p195.19  Eq.5.59, see note p194.41.    



 

p195.24 eq,5,60  a(1+e) = rA = √{ρ
2 + z2.} since energy of two orbits is the same.   

 

p195.36 “rectilinear” means sail is on axis and remains on axis.     

 

p195.44  Eq.5.62 from v1 = v2.  There is no impulse as sail goes edge on, and speed stays 

the same at the patch.   

 

p196.15  Fig.5.12 should have the same orbit nomenclature as fig.5.11.  Suggest x- y- z-

axes correspond to Orbits I II III, and the negative axes be IV V VI.   

 

p196.22  ρ1 = ρ2 implies z1 = z2 = ρ1 = ρ2.   

       Verify that eq.5.63 follows from eq.5.10b.   

 

p196.26  It is not necessary that orbit III is retrograde to orbit I.  From orbit I, do a 

quarter of orbit II, then a quarter of orbit VI on the –x-axis face.  Here using the 

labels of fig.5.12.   See notes p193.44.   

 

p196.31  Emphasis, “non-Keplerian” orbit is circular.  If sailcraft is face-on to Sol, 

orbit will be Keplerian with reduced gravitational parameter μ(1-β).   

 

p197.21  As in sec.5.22, I do not follow the derivation in sec.5.3.2, and use an 

alternative derivation for eqs.5.73ab.   

 

p197.44  Fig.5.13, displaced orbit is perpendicular to z-axis, and z-axis is in anti-Sol 

direction.  z is also displacement distance along that axis, with z2 + ρ2 = r2.  Not sure 

of reference direction for θ.  l is unit vector along sun-line, parallel to z-axis.  For 
continuity, this figure and fig.5.1 should have axes oriented in the same directions.  

See redrawn version in notes for p199.   

  

p198.02  Add “a0” to “characteristic acceleration a0.”   

 

p198.08  eq.5.64  a is acceleration from photon force.   

 

p198.12  eq.5.65a κ is a constant, the photon acceleration of the sailcraft with α = 0.  

I think κ = βμ/r2.   

 

p199.15-18  Alternative derivation for eqs.5.73ab   

     Redraw fig.5.13 with y and z in plane of page, +x-axis going into page.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l  

Fig.5.13  
redrawn in 
the y-z plane.  
ω is along z-
axis .     
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  sinϕ = ρ/r and cosϕ = z/r      MTerraG = μT   (ω~)
2 = √{μT/r

3} 

 

  If α = 0, κ is the photon acceleration of the sailcraft along l, and κcos2α is the 
acceleration along n.  Then the components in the y and z directions are  

ay
P = κcos2αsinα and az

P = κcos3α 

 

  The gravitational acceleration of Terra on the sailcraft is aG = μT/r
2, and the 

components in the y and z directions are ay
G = (μT/r

2)sinϕ and az
G = (μT/r

2)cosϕ.   

 

  Since the orbit offset z is constant, the accelerations along that axis balance.   

 

(eq.A)      κcos3α = az
P = az

G = (μT/r
2)cosϕ = (μT/r

3)z   

 

  The sailcraft is in circular orbit around the z-axis with radius ρ and angular speed ω. 

The ω2ρ = centripetal acceleration =  ay
G - ay

P = (μT/r
2)sinϕ - κcos2αsinα so that  

 

(eq.B)  κcos2αsinα = (μT/r
2)sinϕ - ω2ρ = (μT/r

3)ρ - ω2ρ   

 

     Divide eq.B by eq.A to get  

  tanα =  [(μT/r
3)ρ - ω2ρ ] =   ρ [(μT/r

3) - ω2] = ρ [1 – ω2/(ω~)2]       (eq.5.73a) 

          [(μT/r
3)z ]           z [(μT/r

3)]        z                    

 

  Since (1/cos2α) = 1 + tan2α,  (1/cosα) = [1 + tan2α]1/2 .  Solve (eq.A) for κ and 

substitute for (1/cosα) to get (eq.5.73b). 

 

In cylindrical co-ordinates, del ≡ ρ^(∂/∂ρ) + θ^(1/ρ)(∂/∂θ) + z^(∂/∂z).  Note also that 

∂ρ/∂θ = θ^ and ∂θ/∂ θ = -r^.  All other partials = 0.  And  

ρ^Xz^ = -θ^, θ^Xz^ = ρ^, ρ^Xθ^ = z^. 

 

p198.34  “two terms of eq.5.68 must vanish”, since in the required equilibrium r is 

constant.  Thus delU = a = delV + delΦ = del(-μ/r) + del(ωXωXr) by eqs.5.65b and5.66b.  

At any rate, delU is parallel to a hwich is parallel to n by eq.5.65a.  Thus Eq.5.69. 

 

p198.37  Eq.5.69 a parallel to n by eq.5.65a.   

 

p198.43  Eq.5.70 loses me.   

 

p199.09  Eq.5.72 Use del in cylindrical co-ordinates and definition of U p198m (or 

above), and mess with the algebra.   

 

p199.25  Hwat are the appropriate “rescaling”?  Lost, eqs.5.71-5.73b.   

 

p199.30  add ρ and z to “orbit radius ρ and displacement distance z.” 

 

p199.32  ω = (μ1/2)r0
-3/2 .  Even if units are chosen so that (μ)=1, it is easier to follow 

the derivations if it is included.   

 

p199.36  Add κ “characteristic acceleration κ ...”   

 

p199.43  “surfaces expand and contract.”  In fig.5.14 surfaces 3,4 and 5 are always 

connected at (ρ=±30, z=0).  Surfaces 1 and 2 have the double lobe connected as part of 

the toroidal surface and the separate section on the rite.   

 

p200.20  Fig.5.14 shows surfaces of equal κ, identified in tab.5.2.  Sol to left.  Planet 

should be half lighted.  Add to caption that, defining period is based on r0 = 30rplanet.  

Also, include the graph just to the left of the planet to show that there are no day-side 

solutions.  At (ρ=±30, z=0) sail is edge-on to Sol.  For C1 see p205m.     

 

p200.26  Tab.5.2.  Again, based on r0 = 30rplanet.  Add κ to caption “acceleration κ for 

Mercury ...” 

 

p200.33,37,41  Hwy a0 and not κ?  Have not confirmed numbers in table.   

 



p201.06  Add √{μ} “that ω = √{μ}ρ-3/2 ”, remembering that here √{μ} = 1.   

 

p201.09  “cylindrical” is general, topologically similar.   

 

p201.14  Get eq.5.74a by putting ω2 = μρ-3, ω~2 = μ/r3 into Eq.5.73a, remembering that  

μ = 1.  Then tanα = (ρ/z)[1-r3/(ρ3)].  Remembering r = (ρ2 + z2)1/2,  

tanα = (ρ/z)[1-(ρ2+ z2)3/2/(ρ3)] = (ρ/z)[1-(ρ2/ρ2 + z2/ρ2)3/2] = (ρ/z)[1-(1 + z2/ρ2)3/2].   

  Deriving eq.5.74b is a similar process, not forgetting the lonesome z on the right.   

 

p201.21  κ = 0 means unforced orbit, strictly Keplerian.   

 

p201.44  Fig.5.15  C2 defined p206m.  Show part of graph Solward of planet.   

 

p202.01  “with ω = √{μ}ρ-3/2 ” 

 

p202.02  “large displacements” means large z.   

 

p202.08  Add “in eq.5.73b” to “with respect to ω to zero in eq.5.73b”.  This does imply 

ω=ω~.   

 

p202.25  From eq.5.76b substitute for r using r = (ρ2 + z2)1/2 and solve for ρ to get 

eq.5.77.  Then remember from p199 eq.5.73a that ω~2 = μ/r3 and μ = 1.  

 

p202.30  In eq.5.77 set dρ/dz = 0 = (1/2)[(z2/3/κ0
2/3)-z2]-1/2[(1/κ0

2/3)(2/3)z-1/3 – 2z] =  

(1/2)[1/ρ][(1/κ0
2/3)(2/3)z-1/3 – 2z].  Then the RH term is zero, and substituting for κ0 

using eq.5.76b gives (1/(ω~2z)2/3)(2/3)z-1/3 = 2z.  Invert to ((ω~2z)2/3)(3/2)z1/3 = 2/z = 

(ω~4/3)(3/2)z = ((μ/r3)2/3)(3/2)z = (1/r2)(3/2)z so that (3)z2 = r2 = (ρ2 + z2) and finally ρ2 

= 2z2, eq.5.78.  Amazing and convoluted.   

     Try eq.5.76 in the form κ = ω~2z = z/(ρ2 + z2)3/2 and look at dκ/dρ = 0. 

 

p202.39  “not in fact lie along (Sol) line.”  Useful for Pole communications.   

 

p202.40  Change “off axis” to “off sol-planet axis” or something similar.  For some 

reason I noted that ρ•κ = cosφ. 

 

p202.44  “along the +z axis over the planetary day side.”  In fig.5.17, z-axis has an 

arrowhead, but z on the k radius is a distance.  Needs development and better figure.   

 

p203.21  Fig.5.16  To caption add “acceleration κ contours”.  C3 defined p202.33.   

C4 defined p.206.34.  Acceleration contours κ.  Add more to graph to Solward of planet.   

 

p203.35  Fig.5.17.  z is both Sol-planet axis and a vector at angle ϕ to z-axis.  Blah.  

Need such orbit with φ = 66.5° and T = 24 hours so sail is fixed relative to Pole and 

CONUS.  Or is that “fixed” meaning only one degree of motion?  l is different font than 

text.   

 

p203.44  “perturbation δ such that r0 → r0 + δ” see p207b.   

 

p204.10  For ξ’ and η’ see p182.15. 

 

p204.12  “drift along the nominal orbit” means trouble for synchronous orbits as in note 

for p203m, but see sec.5.3.4.  After that I get lost again.   

 

p205.14 and .20  Curved < and > signs should just be < and >.   

     Eq.5.86 and eq.5.87 derive from eqs.5.85ab.   

 

p205.23  The stable regions in fig.5.14 are the upper left and lower left corners.   

     Add “ρ” and “z” to “large radius ρ and small displacement z”.   

 

p205.25  “ρ = (2/3)1/3r0” ≈ 0.874r0 .  With r0 =30 the intersection is at ρ = 26.2.   

 

p205.42  Set RHS of eq.5.88b > 0.   

 



p206.09 and .13t  For eqs.5.91 and .92, follow book’s substitutions rather than solve 

eq.5.90 for z/ρ.  Eq.5.92 γ ≡ (1+ε2)1/2 => ε2 = γ2 – 1. 

 

p206.32  For eq.5.95 remember that r2 = ρ2 + z2.   

 

p206.35  The stable regions in fig.5.16 are to the left of C4.   

 

p207.19  Fig.5.18  Show planet in half-lite from left.  ξ0 and η0 are displacements. 

 

p207.30  Section 5.3.4 loses me.   

 

p207.36 For ξ’ and η’ see p182.15. 

 

p208.01  Using K for both pitch control and area control is confusing.  Differentiate 

with eq.5.97a Kα and eq.5.97b Kκ. Similarly, the components are  

eq.5.98a K1
α  

eq.5.98b K2
α  

eq.5.99a K1
κ  

eq.5.99b K2
κ 

 

 aρ, az are accelerations in ρ^ and z^. 

 

p209.18  Section 5.3.4.2  Acceleration κ will be controlled by varying the sail area, or 

the reflectivity of the sail as was done by IKAROS.  The pitch angle α will be constant 

at zero in hwat follows.   

 

p209.34  xj form state vector?  Hwat are they explicitly?  I am lost.    

 

p210.18  Fig.5.19.  Sun to left along –z-axis.  Need half-light on planet, label on x-

axis.  And a diagram for axis not along Sol line, as p203m.   

 

p210.44  Fig.5.20  Excursions below zero look like they diverge.  Hwat is maximum 

excursion +/-?   

 

p211.01  A change in the small continuous (not necessarily constant) acceleration of a 

sailcraft or ion engine is called a patch, in contrast to the matching of orbits by a 

short but relatively large impulse, as from a rocket.   

 

p211.19  A Keplerian orbit is partly described by the vis viva equation, v2 = 2μ/r – μ/a, 

with v the speed in any direction, μ = GMCentral Body , r = distance between central body and 

space craft, and a the semi-major axis of the resulting orbit (here typically an 

ellipse).  The non-Keplerian orbit is a circle of radius ρ and orbit rate ω, so v = ωρ.  

The non-Keplerian orbit is offset from the central body by z, and r = √{ρ2 + z2}.  Making 

the substitutions and re-arranging the vis viva equation results in eq.5.106. 

 

p211.23  “apocentre” is generic for apogee, aphelion, et cetera.  It is “apo” because a 

sail in circular orbit moves more slowly than the corresponding Keplerian orbit, since 

the effective gravity of the central source is smaller.   

 

p211.24  Eq.5.107  As the sail goes edge-on to Sol, it will begin an ellipse at the 

apocentre r = √{ρ2 + z2} = rA.   For an ellipse a(1+e) = raphelion.   

 

p211.28  Eliminate a from eqs.106 and 107 to get the eccentricity in eq.108.   

 

p211.33  Eq.5.109  For a circle e = 0.  Put 0 into eq.5.108, solve for ω.   

 

p211.33  “transfers from off-axis orbits”  Elaborate.  This is the Sol-planet axis.   

 

p212.15  Fig.5.21.  Sol to left.  All three orbits are circular.  Orbit II-upper and 

Orbits II-lower are centered on the z-axis.  Any point on all three orbits are the same 

distance r from the planet, easiest to see at the tangents to Orbit I.  Label the Orbit I 

axis with k, per fig.5.17 p203.  Redraw with k- and z-axis in plane of page.  In book, 



Orbit II-upper does not pass thru the Orbit I/Orbit II-lower contact, just bad 

perspective.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p212.17  “The off-axis Orbit I is an ”   

 

p212.21  Eq.5.10a  uses increase factor of (l•κ)-2 = (cosϕ)2 from p202.42.    

 

p212.28 eq.5.111  ρ1ω~ = ρ2ω2.  The subscript “2” can refer to upper or lower Orbit II.   

 

p212.42  Eq.5.113 lacks (1/cos2φ) in rightmost term per p202.42.  It comes from κ2 – κ1, 

consistent with signs of eq.5.113.  Insert +Φ for Orbit II lower and –Φ for Orbit II 

upper.   

 

p212.44  Check that fig.5.22 is consistent with eq.5.113 with the factor (cosϕ)-2.   

 

p213.29  Fig.5.22, in caption define T1 from Orbit II lower and T2 from Orbit II upper.  

The point of the line  φ + Φ = π/2 is that it is the limit that keeps Orbit II on the 

nite side.   

 

p213.31  “transfer back from Orbit II (lower}” , with z1 rotated about z relative to its 

original position.   

 

p213.39  “keep Orbit II on planetary night-side.” => φ + Φ = π/2   

 

p213.44  “composed of small”  need example.   

 

p214.09  Hwere are the “four new additional equilibria”?   

 

p214.39  μ = m2/(m1 + m2) defined, not μ = MG as earlier.   

 

p215.17  Fig.5.23  Mark center of mass at axes intersection.  Show ω coming out of page, 

centered at origin. Triangles are equilateral.  If m1 is luminous there are two more 

points L6 and L7, locations unknown.   

 

 

l  

Fig.5.21  
redrawn in 
the y-z plane.  
ω is along z-
axis .     
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All orbits are shown edge-on.   

 

tanΦ = ρ1/z1   

tan(Φ - φ) = ρ2/z2  = tanθ 
 r2 = ρ1

2 + z1
2 = ρ2

2 + z2
2 

Orbit II-upper and Orbit II-lower are 
centered on z-axis and tangent to Orbit I 
in y-z plane.   
Angular speed of Orbit I is ω = ω~.   
Angular speed of Orbit II-lower is ω1.    
Angular speed of Orbit II-upper is ω2.       
 



p215.24  “ is modified reduced ” 

 

p215.38  Remember that n is fixed after this, and ω = 1.   

 

p216.11  Fig.5.24  Make ω bold ω.  m1 is Sol = luminous body, make open circle.  Axes 

cross at center of mass.  Label m1 at –μ, m2 at 1-μ.  Sail is not in x-z plane.   

        

p216.18  Eq.5.114 same as eq.5.64.  Eqs.5.117ab same as eqs.5.66ab.   

 

p216.34  Add “/” to “m2/(m1+m2).   

 

p217.01  “must vanish, so that delU = a.”   

 

p217.15  cone and clock angle defined.  Hard to visualize.   

 

p218.24  Fig.5.25  Since this now represents the solar system, m1 represents luminous Sol 

and essentially sits on the co-ordinate system origin, not at -μ.  In (c), m1 is to left.  

Hwat does the area around m2 look like in the y-z plane?   

 

p219.10  L1 < x < 1-μ = m2 ≈ 1 since m1 is Sol and μ ≈ 0. From p214b μ = m2/(m1+m2) 

 

p219.15  β → ∞, see fig.5.26 p220t.   

 

p219.23  “single sail attitude angle”  I think this is α. 

 

p219.39  Should read “that their there are surfaces around”.   

 

p220.22  Add “forbidden” hash marks to graphs.   

         Caption fig.5.26, add “on p177” to “(see Table 5.1 type 1 on p177 for values)”.   

 

p221.09  How to derive eq.5.126, and its predecessors.  Then I get lost anyway.   

 

p225.16  Offset angle in fig.2.7 p47.     

 

p225.35  as used here, in fig.2.7, u // r, I think.   

 

p226.35  Add “ness” to “a lightness number”.   

 

p227.20  Fig.5.28  To caption add “reflectivity 0.9”, “dashed lines” and “solid lines” 

Add Sol and Terra to drawing. Compare to first quadrant of fig.5.2 p176.     

 

 


